

Experiments to Measure Material and Mechanism Damping at Cold Temperatures

Marie B. Levine & Chris V. White

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

M. Levine

MOTIVATION & OBJECTIVES

- NGST requires nanometer stability of OTE at 40K
- · Damping at cryo temperatures expected to be extremely low ...
- · But very little data available, especially on materials of interest
- NGST funded the development of a cryogenic damping test facility at JPL.
- · The cryogenic damping laboratory provides a unique capability
- Experiment Requirement:
 - Damping accuracy $\zeta > 10^{-3} \%$
 - Minimize external damping sources

M. Levine

- Temperature > 25 °K
- NGST representative materials and hardware
- Correlate to model

NGS

CRYO DAMPING TEST FACILITY

M. Levine

TYPICAL TEST DATA:

Zener Damping Model

- Models the thermoelastic energy loss of beams undergoing bending strain
- Applies to homogeneous isotropic metallic materials
- Damping induced by atomic dislocation and heat dissipation
- Damping (linearly) proportional to temperature !!!
- Damping a function of frequency
- Damping not a function of strain (above the relaxation frequency)

$$\xi = \frac{\alpha^2 ET}{2C_p \rho} \begin{bmatrix} \omega \tau \\ \frac{1 + (\omega \tau)^2}{1 - (\omega \tau)^2} \end{bmatrix} \qquad \begin{array}{l} \alpha = \text{coeff of thermal exponsion} \\ E = \text{modulus of elasticity} \\ T = \text{temperature} \\ C_p = \text{specific heat} \end{array}$$

$$\tau = \frac{C_p h^2 \rho}{\kappa \pi^2}$$

 α = coeff of thermal expansion

= material density

= frequency of vibration

= thermal relaxation time

= specimen thickness

= thermal conductivity

Caveats

- Zener model does not predict damping for nonmetallic materials such as composites
- Zener model does not predict damping from axial or torsional strains.
- System level damping will also be influenced by friction of mechanisms and interfaces.

NGST

Properties of Al 6061-76 Samples

Specimen	Thickness (mm)	Nominal Frequency at 293K (Hz)	Support Separation (mm)	End Mass (kg)
Al-A	6.267	126	279	0
Al-B	3.142	63	279	0
Al-C	1.510	31.5	279	0
Al-D	1.510	18.2	406	0.1880
Al-Weld	6.291	126	279	0

M. Levine

NGST

Damping of Al 6061-T6 vs. Frequency and Temperature

NGST

Welded Al 6061-Té Sample

Welding does not significantly affect damping

M. Levine

- ·Zener model predicts room temperature damping
- ·Prediction fails at cryo because of errors in thermal properties or theory
- ·Largest damping change for frequency close to thermal relaxation frequency

M. Levine

Sample	ζ ₂₉₃	ζ ₄₀	Ratio ζ_{293}/ζ_{40}
Al-A	9.0e-5	0.74e-5	12.2
Al-B	44.8e-5	1.8e-5	24.9
Al-C	109e-5	1.8e-5	60.6
Al-D	75.5e-5	1.4e-5	53.9
Al-Weld	8.1e-5	0.69e-5	11.7

·Largest damping change for frequency close to thermal relaxation frequency

· At 40K damping for Al ~1e-3%, and is less sensitive to frequency

Damping of Various Composites

M. Levine

Properties of Beryllium Samples

Specimen	Thickness (mm)	Nominal Frequency at 293K (Hz)	Support Separation (mm)	End Mass (kg)
Be-A	6.50	337.2	279	0
Be-B	2.65	137.1	279	0
Be-C	1.40	72.5	279	0
Be-D	1.40	40.8	418	0.064

Damping of Beryllium

Summary of Measured Damping Values for Beryllium

Sample	ζ ₂₉₃	ζ ₄₀	Ratio ζ_{293}/ζ_{40}
Be- A	3.8e-5	2e-5	1.9
Be -B	28e-5	4e-5	7
Be -C	88e-5	8e-5	11
Be -D	91e-5	8e-5	11.4

- · Zener prediction in progress
- ·The ratio between RT and 40K is less than for Al, but au may be different.
- · Below 40K Be damping drops off suddenly.
- · At 40K Be damping is ~5e-3%

M. Levine

Conclusions

- Developed a unique facility to measure damping at a range of temperatures from RT to 20K.
- More materials are currently being tested including fused silica.
- Other cryo tests:
 - Micro-G Accelerometer calibration in progress
 - Friction devices and actuators will be tested this summer.
 - Second facility is being set up to measure creep and CTE from RT to 30K. Projected accuracy is 0.1ppm.